§ 175.300 - Resinous and polymeric coatings.

Copy with citation
Copy as parenthetical citation

Resinous and polymeric coatings may be safely used as the food-contact surface of articles intended for use in producing, manufacturing, packing, processing, preparing, treating, packaging, transporting, or holding food, in accordance with the following prescribed conditions:

The coating is applied as a continuous film or enamel over a metal substrate, or the coating is intended for repeated food-contact use and is applied to any suitable substrate as a continuous film or enamel that serves as a functional barrier between the food and the substrate. The coating is characterized by one or more of the following descriptions:

Coatings cured by oxidation.

Coatings cured by polymerization, condensation, and/or cross-linking without oxidation.

Coatings prepared from pre­poly­merized substances.

The coatings are formulated from optional substances that may include:

Substances generally recognized as safe in food.

Substances the use of which is permitted by regulations in this part or which are permitted by prior sanction or approval and employed under the specific conditions, if any, of the prior sanction or approval.

Any substance employed in the production of resinous and polymeric coatings that is the subject of a regulation in subchapter B of this chapter and conforms with any specification in such regulation. Substances named in this paragraph (b)(3) and further identified as required:

Drying oils, including the triglycerides or fatty acids derived therefrom:

Reconstituted oils from triglycerides or fatty acids derived from the oils listed in paragraph (b)(3)(i) of this section to form esters with:

Synthetic drying oils, as the basic polymer:

Natural fossil resins, as the basic resin:

Rosins and rosin derivatives, with or without modification by polymerization, isomerization, incidental decarboxylation, and/or hydrogenation, as follows:

Rosins, refined to color grade of K or paler:

Rosin esters formed by reacting rosin (paragraph (b)(3)(v)(a) of this section) with:

Rosin esters (paragraph (b)(3)­(v)(b) of this section) modified by reaction with:

Rosin salts:

Phenolic resins as the basic polymer formed by reaction of phenols with formaldehyde:

Phenolic resins formed by reaction of formaldehyde with:

Adjunct for phenolic resins: Aluminum butylate.

Polyester resins (including alkyd-type), as the basic polymers, formed as esters of acids listed in paragraph (b)(3)(vii) (a) and (b) of this section by reaction with alcohols in paragraph (b)(3)(vii) (c) and (d) of this section.

Polybasic acids:

Monobasic acids:

Polyhydric alcohols:

Monohydric alcohols:

Catalysts:

Epoxy resins, catalysts, and adjuncts:

Epoxy resins, as the basic polymer:

Catalysts and cross-linking agents for epoxy resins:

Adjuncts for epoxy resins:

Coumarone-indene resin, as the basic polymer.

Petroleum hydrocarbon resin (cyclopentadiene type), as the basic polymer.

Terpene resins, as the basic polymer, from one or more of the following:

Urea-formaldehyde, resins and their curing catalyst:

Urea-formaldehyde resins, as the basic polymer:

Curing (cross-linking) catalyst for urea-formaldehyde resins:

Triazine-formaldehyde resins and their curing catalyst:

Triazine-formaldehyde resins, as the basic polymer:

Curing (cross-linking) catalyst for triazine-formaldehyde resins:

Modifiers (for oils and alkyds, including polyesters), as the basic polymer:

Vinyl resinous substance, as the basic polymers:

Cellulosics, as the basic polymer:

Styrene polymers, as the basic polymer:

Acrylonitrile.

α-Methylstyrene.

(xviii) Polyethylene and its copolymers as the basic polymer:

Polypropylene as the basic polymer:

Acrylics and their copolymers, as the basic polymer:

Elastomers, as the basic polymer:

Driers made by reaction of a metal from paragraph (b)(3)(xxii)(a) of this section with acid, to form the salt listed in paragraph (b)(3)(xxii)(b) of this section:

Metals:

Salts:

(xxiii) Waxes:

Plasticizers:

Release agents, as the basic polymer, when applicable:

Colorants used in accordance with § 178.3297 of this chapter.

(xxvii) Surface lubricants:

(xxviii) Silicones and their curing catalysts:

Silicones as the basic polymer:

Curing (cross-linking) catalysts for silicones (the maximum amount of tin catalyst used shall be that required to effect optimum cure but shall not exceed 1 part of tin per 100 parts of siloxane resins solids):

Surface active agents:

Antioxidants:

Can end cements (sealing compounds used for sealing can ends only): In addition to the substances listed in paragraph (b) of this section and those listed in § 177.1210(b)(5) of this chapter, the following may be used:

(xxxii) Side seam cements: In addition to the substances listed in paragraph (b)(3) (i) to (xxx), inclusive, of this section, the following may be used.

(xxxiii) Miscellaneous materials:

(xxxiv) Polyamide resins derived from dimerized vegetable oil acids (containing not more than 20 percent of monomer acids) and ethylenediamine, as the basic resin, for use only in coatings that contact food at temperatures not to exceed room temperature.

Polyamide resins having a maximum acid value of 5 and a maximum amine value of 8.5 derived from dimerized vegetable oil acids (containing not more than 10 percent of monomer acids), ethylenediamine, and 4,4-bis (4-hydroxyphenyl) pentanoic acid (in an amount not to exceed 10 percent by weight of said polyamide resins); as the basic resin, for use only in coatings that contact food at temperatures not to exceed room temperature provided that the concentration of the polyamide resins in the finished food-contact coating does not exceed 5 milligrams per square inch of food-contact surface.

(xxxvi) Methacrylonitrile grafted polybutadiene copolymers containing no more than 41 weight percent of total polymer units derived from methacrylonitrile; for use only in coatings that are intended for contact, under conditions of use D, E, F, or G described in table 2 of paragraph (d) of this section, with food containing no more than 8 percent of alcohol.

(xxxvii) Polymeric resin as a coating component prepared from terephthalic acid, isophthalic acid, succinic anhydride, ethylene glycol, diethylene glycol, and 2,2-dimethyl-1,3-propanediol for use in contact with aqueous foods and alcoholic foods containing not more than 20 percent (by volume) of alcohol under conditions of use D, E, F, and G described in table 2 of § 176.170 of this chapter. The resin shall contain no more than 30 weight percent of 2,2-dimethyl-1,3-propanediol.

The coating in the finished form in which it is to contact food, when extracted with the solvent or solvents characterizing the type of food, and under conditions of time and temperature characterizing the conditions of its intended use as determined from tables 1 and 2 of paragraph (d) of this section, shall yield chloroform-soluble extractives, corrected for zinc extractives as zinc oleate, not to exceed the following:

From a coating intended for or employed as a component of a container not to exceed 1 gallon and intended for one-time use, not to exceed 0.5 milligram per square inch nor to exceed that amount as milligrams per square inch that would equal 0.005 percent of the water capacity of the container, in milligrams, divided by the area of the food-contact surface of the container in square inches. From a fabricated container conforming with the description in this paragraph (c)(1), the extractives shall not exceed 0.5 milligram per square inch of food-contact surface nor exceed 50 parts per million of the water capacity of the container as determined by the methods provided in paragraph (e) of this section.

From a coating intended for or employed as a component of a container having a capacity in excess of 1 gallon and intended for one-time use, not to exceed 1.8 milligrams per square inch nor to exceed that amount as milligrams per square inch that would equal 0.005 percent of the water capacity of the container in milligrams, divided by the area of the food-contact surface of the container in square inches.

From a coating intended for or employed as a component of a container for repeated use, not to exceed 18 milligrams per square inch nor to exceed that amount as milligrams per square inch that would equal 0.005 percent of the water capacity of the container in milligrams, divided by the area of the food-contact surface of the container in square inches.

From coating intended for repeated use, and employed other than as a component of a container, not to exceed 18 milligrams per square inch of coated surface.

Tables:

Analytical methods—(1) Selection of extractability conditions. First ascertain the type of food product (table 1, paragraph (d) of this section) that is being packed commercially in the test container and the normal conditions of thermal treatment used in packaging the type of food involved. Using table 2 (paragraph (d) of this section), select the food-simulating solvent or solvents (demineralized distilled water, heptane, and/or 8 percent ethyl alcohol) and the time-temperature exaggerations of the container-use conditions. Aqueous products (Types I, II, IV-B, and VI-B) require only a water-extractability test at the temperature and time conditions shown for the most severe “conditions of use.” Aqueous products with free oil or fat, and water-oil emulsions (types III, IV-A, and VII) will require determinations of both water extractability and heptane extractability. Low-moisture fats and oils (type V with no free water) require only the heptane extractability. Alcoholic beverages (type VI-A) require only the 8 percent alcohol extractant. Having selected the appropriate extractant or extractants simulating various types of foods and beverages and the time-temperature exaggerations over normal use, follow the applicable extraction procedure. Adapt the procedure, when necessary, for containers having a capacity of over 1 gallon.

Selection of coated-container samples. For consumer-sized containers up to 1 gallon, quadruplicate samples of representative containers (using for each replicate sample the number of containers nearest to an area of 180 square inches) should be selected from the lot to be examined.

Cleaning procedure preliminary to determining the amount of extractables from coated containers. Quadruplicate samples of representative containers should be selected from the lot to be examined and must be carefully rinsed to remove extraneous material prior to the actual extraction procedure. Soda fountain pressure-type hot water rinsing equipment, consisting in its simplest form of a 1/8-inch-1/4-inch internal diameter metal tube attached to a hot water line and bent so as to direct a stream of water upward, may be used. Be sure hot water has reached a temperature of 190 °F-200 °F before starting to rinse the container. Invert the container over the top of the fountain and direct a strong stream of hot water against the bottom and all sides for 1 minute, drain, and allow to dry.

Exposure conditions—(i) Water (250 °F for 2 hours), simulating high-temperature heat sterilization. Fill the container within 1/4-inch of the top with a measured volume of demineralized distilled water. Cover the container with clean aluminum foil and place the container on a rack in a pressure cooker. Add a small amount of demineralized distilled water to the pressure cooker, but do not allow the water to touch the bottom of the container. Close the cooker securely and start to heat over a suitable burner. When a steady stream of steam emerges from the vent, close the vent and allow the pressure to rise to 15 pounds per square inch (250 °F) and continue to maintain this pressure for 2 hours. Slowly release the pressure, open the pressure cooker when the pressure reads zero, and composite the water of each replicate immediately in a clean Pyrex flask or beaker. Proceed with the determination of the amount of extractives by the method described in paragraph (e)(5) of this section.

Water (212 °F for 30 minutes), simulating boiling water sterilization. Fill the container within 1/4-inch of the top with a measured volume of boiling, demineralized distilled water. Cover the container with clean aluminum foil and place the container on a rack in a pressure cooker in which a small amount of demineralized distilled water is boiling. Do not close the pressure vent, but operate at atmospheric pressure so that there is a continuous escape of a small amount of steam. Continue to heat for 30 minutes, then remove the test container and composite the contents of each replicate immediately in a clean Pyrex flask or beaker. Proceed with the determination of the amount of extractives by the method described in paragraph (e)(5) of this section.

Water (from boiling to 100 °F), simulating hot fill or pasteurization above 150 °F. Fill the container within 1/4-inch of the top with a measured volume of boiling, demineralized distilled water. Insert a thermometer in the water and allow the uncovered container to stand in a room at 70 °F-85 °F. When the temperature reads 100 °F, composite the water from each replicate immediately in a clean Pyrex flask or beaker. Proceed with the determination of the amount of extractives by the method described in paragraph (e)(5) of this section.

Water (150° for 2 hours), simulating hot fill or pasteurization below 150 °F. Preheat demineralized distilled water to 150 °F in a clean Pyrex flask. Fill the container within 1/4-inch of the top with a measured volume of the 150 °F water and cover with clean aluminum foil. Place the test container in an oven maintained at 150 °F. After 2 hours, remove the test container from the oven and immediately composite the water of each replicate in a clean Pyrex flask or beaker. Proceed with the determination of the amount of extractives by the method described in paragraph (e)(5) of this section.

Water (120 °F for 24 hours), simulating room temperature filling and storage. Preheat demineralized distilled water to 120 °F in a clean Pyrex flask. Fill the container within 1/4-inch of the top with a measured volume of the 120 °F water and cover with clean aluminum foil. Place the test container in an incubator or oven maintained at 120 °F. After 24 hours, remove the test container from the incubator and immediately composite the water of each replicate in a clean Pyrex flask or beaker. Proceed with the determination of the amount of extractives by the method described in paragraph (e)(5) of this section.

Water (70 °F for 48 hours), simulating refrigerated storage. Bring demineralized distilled water to 70 °F in a clean Pyrex flask. Fill the container within 1/4-inch of the top with a measured volume of the 70 °F water, and cover with clean aluminum foil. Place the test container in a suitable room maintained at 70 °F. After 48 hours, immediately composite the water of each replicate in a clean Pyrex flask or beaker. Proceed with the determination of the amount of extractives by the method described in paragraph (e)(5) of this section.

Water (70 °F for 24 hours), simulating frozen storage. Bring demineralized distilled water to 70 °F in a clean Pyrex flask. Fill the container within 1/4-inch of the top with a measured volume of the 70 °F water and cover with clean aluminum foil. Place the container in a suitable room maintained at 70 °F. After 24 hours, immediately composite the water of each replicate in a clean Pyrex flask or beaker. Proceed with the determination of the amount of extractives by the method described in paragraph (e)(5) of this section.

Water (212 °F for 30 minutes), simulating frozen foods reheated in the container. Fill the container to within 1/4-inch of the top with a measured volume of boiling, demineralized distilled water. Cover the container with clean aluminum foil and place the container on a rack in a pressure cooker in which a small amount of demineralized distilled water is boiling. Do not close the pressure vent, but operate at atmospheric pressure so that there is a continuous escape of a small amount of steam. Continue to heat for 30 minutes, then remove the test container and composite the contents of each replicate immediately in a clean Pyrex flask or beaker. Proceed with the determination of the amount of extractives by the method described in paragraph (e)(5) of this section.

Heptane (150 °F for 2 hours) simulating high-temperature heat sterilization for fatty foods only. Preheat redistilled reagent-grade heptane (boiling point 208 °F) carefully in a clean Pyrex flask on a water bath or nonsparking hot plate in a well-ventilated hood to 150 °F. At the same time preheat a pressure cooker or equivalent to 150 °F in an incubator. This pressure cooker is to serve only as a container for the heptane-containing test package inside the incubator in order to minimize the danger of explosion. Fill the test container within 1/4-inch of the top with a measured volume of the 150 °F heptane and cover with clean aluminum foil. Place the test container in the preheated pressure cooker and then put the assembly into a 150 °F incubator. After 2 hours, remove the pressure cooker from the incubator, open the assembly, and immediately composite the heptane of each replicate in a clean Pyrex flask or beaker. Proceed with the determination of the amount of extractives by the method described in paragraph (e)(5) of this section.

Heptane (120 °F for 30 minutes), simulating boiling water sterilization of fatty foods only. Preheat redistilled reagent-grade heptane (boiling point 208 °F) carefully in a clean Pyrex flask on a water bath or nonsparking hot plate in a well-ventilated hood to 120 °F. At the same time, preheat a pressure cooker or equivalent to 120 °F in an incubator. This pressure cooker is to serve only as a vented container for the heptane-containing test package inside the incubator in order to minimize the danger of explosion. Fill the test container within 1/4-inch of the top with a measured volume of the 120 °F heptane and cover with clean aluminum foil. Place the test container in the preheated pressure cooker and then put the assembly into a 120 °F incubator. After 30 minutes, remove the pressure cooker from the incubator, open the assembly, and immediately composite the heptane of each replicate in a clean Pyrex flask or beaker. Proceed with the determination of the amount of extractives by the method described in paragraph (e)(5) of this section.

Heptane (120 °F for 15 minutes), simulating hot fill or pasteurization above 150 °F for fatty foods only. Preheat redistilled reagent-grade heptane (boiling point 208 °F) carefully in a clean Pyrex flask on a water bath or nonsparking hot plate in a well-ventilated hood to 120 °F. At the same time, preheat a pressure cooker or equivalent to 120 °F in an incubator. This pressure cooker is to serve only as a container for the heptane-containing test package inside the incubator in order to minimize the danger of explosion. Fill the test container within 1/4-inch of the top with a measured volume of the 120 °F heptane and cover with clean aluminum foil. Place the test container in the preheated pressure cooker and then put the assembly into a 120 °F incubator. After 15 minutes, remove the pressure cooker from the incubator, open the assembly, and immediately composite the heptane of each replicate in a clean Pyrex flask or beaker. Proceed with the determination of the amount of extractives by the method described in paragraph (e)(5) of this section.

Heptane (100 °F for 30 minutes), simulating hot fill or pasteurization below 150 °F for fatty foods only. Preheat redistilled reagent-grade heptane (boiling point 208 °F) carefully in a clean Pyrex flask on a water bath or nonsparking hot plate in a well-ventilated hood to 100 °F. At the same time, preheat a pressure cooker or equivalent to 100 °F in an incubator. This pressure cooker is to serve only as a container for the heptane-containing test package inside the incubator in order to minimize the danger of explosion. Fill the test container within 1/4-inch of the top with a measured volume of the 100 °F heptane and cover with clean aluminum foil. Place the test container in the preheated pressure cooker and then put the assembly into a 100 °F incubator. After 30 minutes, remove the pressure cooker from the incubator, open the assembly and immediately composite the heptane of each replicate in a clean Pyrex flask or beaker. Proceed with the determination of the amount of extractives by the method described in paragraph (e)(5) of this section.

Heptane (70 °F for 30 minutes), simulating room temperature filling and storage of fatty foods only. Fill the test container within 1/4-inch of the top with a measured volume of the 70 °F heptane and cover with clean aluminum foil. Place the test container in a suitable room maintained at 70 °F. After 30 minutes, composite the heptane of each replicate in a clean Pyrex flask or beaker. Proceed with the determination of the amount of extractives by the method described in paragraph (e)(5) of this section.

Heptane (120 °F for 30 minutes), simulating frozen fatty foods reheated in the container. Preheat redistilled reagent-grade heptane (boiling point 208 °F) carefully in a clean Pyrex flask on a water bath or hot plate in a well-ventilated hood to 120 °F. At the same time, preheat a pressure cooker to 120 °F in an incubator. This pressure cooker is to serve only as a container for the heptane-containing test package inside the incubator in order to minimize the danger of explosion. Fill the test container within 1/4-inch of the top with a measured volume of the 120 °F heptane and cover with clean aluminum foil. Place the test container in the preheated pressure cooker and then put the assembly into a 120 °F incubator. After 30 minutes, remove the pressure cooker from the incubator, open the assembly and immediately composite the heptane from each replicate into a clean Pyrex flask. Proceed with the determination of the amount of extractives by the method described in paragraph (e)(5) of this section.

Alcohol—8 percent (150 °F for 2 hours), simulating alcoholic beverages hot filled or pasteurized below 150 °F. Preheat 8 percent (by volume) ethyl alcohol in demineralized distilled water to 150 °F in a clean Pyrex flask. Fill the test container with within 1/4-inch of the top with a measured volume of the 8 percent alcohol. Cover the container with clean aluminum foil and place in an oven maintained at 150 °F. After 2 hours, remove the container from the oven and immediately composite the alcohol from each replicate in a clean Pyrex flask. Proceed with the determination of the amount of extractives by the method described in paragraph (e)(5) of this section.

Alcohol—8 percent (120 °F for 24 hours), simulating alcoholic beverages room-temperature filled and stored. Preheat 8 percent (by volume) ethyl alcohol in demineralized distilled water to 120 °F in a clean Pyrex flask. Fill the test container within 1/4-inch of the top with a measured volume of the 8 percent alcohol, cover the container with clean aluminum foil and place in an oven or incubator maintained at 120 °F. After 24 hours, remove the container from the oven or incubator and immediately composite the alcohol from each replicate into a clean Pyrex flask. Proceed with the determination of the amount of extractives by the method described in paragraph (e)(5) of this section.

Alcohol—8 percent (70 °F for 48 hours), simulating alcoholic beverages in refrigerated storage. Bring 8 percent (by volume) ethyl alcohol in demineralized distilled water to 70 °F in a clean Pyrex flask. Fill the test container within 1/4-inch of the top with a measured volume of the 8 percent alcohol. Cover the container with clean aluminum foil. Place the test container in a suitable room maintained at 70 °F. After 48 hours, immediately composite the alcohol from each replicate into a clean Pyrex flask. Proceed with the determination of the amount of extractives by the method described in paragraph (e)(5) of this section.

The tests specified in paragraph (e)(4) (i) through (xvii) of this section are applicable to flexible packages consisting of coated metal contacting food, in which case the closure end is double-folded and clamped with metal spring clips by which the package can be suspended.

Determination of amount of extractives—(i) Total residues. Evaporate the food-simulating solvents from paragraph (e)(4) (i) to (xvii), inclusive, of this section to about 100 milliliters in the Pyrex flask and transfer to a clean, tared platinum dish, washing the flask three times with the solvent used in the extraction procedure, and evaporate to a few milliliters on a nonsparking low-temperature hotplate. The last few milliliters should be evaporated in an oven maintained at a temperature of 212 °F. Cool the platinum dish in a desiccator for 30 minutes and weigh the residue to the nearest 0.1 milligram (e). Calculate the extractives in milligrams per square inch and in parts per million for the particular size of container being tested and for the specific food-simulating solvent used.

Water and 8-percent alcohol.

Heptane.

Chloroform-soluble extractives residue. Add 50 milliliters of chloroform (freshly distilled reagent grade or a grade having an established consistently low blank) to the dried and weighed residue, (e), in the platinum dish, obtained in paragraph (e)(5)(i) of this section. Warm carefully, and filter through Whatman No. 41 filter paper in a Pyrex funnel, collecting the filtrate in a clean, tared platinum dish. Repeat the chloroform extraction, washing the filter paper with this second portion of chloroform. Add this filtrate to the original filtrate and evaporate the total down to a few milliliters on a low-temperature hotplate. The last few milliliters should be evaporated in an oven maintained at 212 °F. Cool the platinum dish in a desiccator for 30 minutes and weigh to the nearest 0.1 milligram to get the chloroform-soluble extractives residue (e′). This e′ is substituted for e in the equations in paragraph (e)(5)(i) (a) and (b) of this section. If the concentration of extractives (Ex) still exceeds 50 parts per million or the extractives in milligrams per square inch exceed the limitations prescribed in paragraph (c) of this section for the particular container size, proceed as follows to correct for zinc extractives (“C” enamels only): Ash the residue in the platinum dish by heating gently over a Meeker-type burner to destroy organic matter and hold at red heat for about 1 minute. Cool in the air for 3 minutes, and place the platinum dish in the desiccator for 30 minutes and weigh to the nearest 0.1 milligram. Analyze this ash for zinc by standard Association of Official Agricultural Chemists methods or equivalent. Calculate the zinc in the ash as zinc oleate, and subtract from the weight of chloroform-soluble extractives residue (e′) to obtain the zinc-corrected chloroform-soluble extractives residue (ee′). This ee′ is substituted for e in the formulas in paragraph (e)(5)(i) (a) and (b) of this section. To comply with the limitations in paragraph (c) of this section, the chloroform-soluble extractives residue (but after correction for the zinc extractives in case of “C” enamels) must not exceed 50 parts per million and must not exceed in milligrams per square inch the limitations for the particular article as prescribed in paragraph (c) of this section.

Equipment and reagent requirements—(1) Equipment.

Rinsing equipment, soda fountain pressure-type hot water, consisting in simplest form of a 1/8-inch-1/4-inch inside diameter metal tube attached to a hot water line delivering 190 °F-200 °F water and bent so as to direct a stream of water upward.

Pressure cooker, 21-quart capacity with pressure gage, safety release, and removable rack, 12.5 inches inside diameter × 11 inches inside height, 20 pounds per square inch safe operating pressure.

Oven, mechanical convection, range to include 120 °F-212 °F explosion-proof, inside dimensions (minimum), 19″ × 19″ × 19″, constant temperature to ±2 °F (water bath may be substituted).

Incubator, inside dimensions (minimum) 19″ × 19″ × 19″ for use at 100 °F±2 °F explosion proof (water bath may be substituted).

Constant-temperature room or chamber 70 °F±2 °F minimum inside dimensions 19″ × 19″ × 19″.

Hot plate, nonsparking (explosion proof), top 12″ × 20″, 2,500 watts, with temperature control.

Platinum dish, 100-milliliter capacity minimum.

All glass, Pyrex or equivalent.

Reagents.

Water, all water used in extraction procedure should be freshly demineralized (deionized) distilled water.

Heptane, reagent grade, freshly redistilled before use, using only material boiling at 208 °F.

Alcohol, 8 percent (by volume), prepared from undenatured 95 percent ethyl alcohol diluted with demineralized or distilled water.

Chloroform, reagent grade, freshly redistilled before use, or a grade having an established, consistently low blank.

Filter paper, Whatman No. 41 or equivalent.

In accordance with good manufacturing practice, finished coatings intended for repeated food-contact use shall be thoroughly cleansed prior to their first use in contact with food.

Acrylonitrile copolymers identified in this section shall comply with the provisions of § 180.22 of this chapter.

Epoxy resins derived by the reaction of 4,4′-isopropylidenediphenol and epichlorohydrin, as described in paragraph (b)(3)(viii)(a) of this section, may be used in accordance with this section except as coatings in packaging for powdered and liquid infant formula.

For Federal Register citations affecting § 175.300, see the List of CFR Sections Affected, which appears in the Finding Aids section of the printed volume and at www.govinfo.gov.